### DEUXIEME PARTIE : ZONAGE

<table>
<thead>
<tr>
<th>Ind</th>
<th>Etabli par</th>
<th>Apprové par</th>
<th>Date</th>
<th>Objet de la révision</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C.RAVIDAT</td>
<td>R.GARCIA / F.PEYCEON</td>
<td>Décembre 2013</td>
<td>Etablissement</td>
</tr>
<tr>
<td>B</td>
<td>C.RAVIDAT</td>
<td>R.GARCIA / F.PEYCEON</td>
<td>Octobre 2014</td>
<td>Prise en compte des remarques</td>
</tr>
</tbody>
</table>
1 PREAMBULE

La présente étude a pour objectif la réalisation du schéma directeur et du zonage des eaux pluviales sur la commune de Sainte Consorce.

En effet, dans le cadre de l’élaboration de son PLU, la commune souhaite intégrer un volet pluvial comportant des préconisations en matière d’urbanisme et de gestion qualitative et quantitative des eaux de ruissellement.

Cette étude vise à répondre aux objectifs suivants :

- Caractériser le fonctionnement actuel du réseau d’eaux pluviales et localiser les dysfonctionnements,
- Établir un diagnostic du système d’assainissement des eaux pluviales,
- Permettre à la commune de disposer d’un document global permettant une cohérence opérationnelle entre urbanisation et eaux pluviales,
- Réaliser une étude de faisabilité sur la mise en place de la taxe « eaux pluviales ».

La réalisation de l’étude s’organise autour de 3 phases :

- Phase 1 : Collecte des données
- Phase 2 : Modélisation
- Phase 3 : Schéma directeur et zonage

Le présent mémoire correspond à la deuxième partie du rapport de phase 3, constitué du zonage pluvial et de son règlement.
2 CADRE REGLEMENTAIRE

2.1 CODE GENERAL DES COLLECTIVITES TERRITORIALES

Le zonage d'assainissement est un outil réglementaire qui s'inscrit dans une démarche prospective, voire de programmation de l'assainissement. Le volet pluvial du zonage permet d’assurer la maîtrise des ruissellements et la prévention de la dégradation des milieux aquatiques par temps de pluie, sur un territoire communal ou intercommunal.

Il permet de fixer des prescriptions cohérentes à l’échelle du territoire d’étude. Il est défini dans l'article L2224-10 du code général des collectivités territoriales et repris dans l'article L123-1 du code de l’urbanisme.

Article L2224-10 du CGCT :

"Les communes ou leurs établissements publics de coopération délimitent, après enquête publique : [...]"

3° Les zones où des mesures doivent être prises pour limiter l'imperméabilisation des sols et pour assurer la maîtrise du débit et de l'écoulement des eaux pluviales et de ruissellement ;

4° Les zones où il est nécessaire de prévoir des installations pour assurer la collecte, le stockage éventuel et, en tant que de besoin, le traitement des eaux pluviales et de ruissellement lorsque la pollution qu’elles apportent au milieu aquatique risque de nuire gravement à l’efficacité des dispositifs d’assainissement."

Le zonage est souvent mis en place sur des périmètres à fort développement. Il permet alors de programmer les investissements publics en matière de gestion des eaux pluviales, d’anticiper les effets à venir des aménagements ou d’optimiser les bénéfices d’opérations de requalifications d’espaces, pour ne pas aggraver la situation existante, voire même pour l’améliorer. Il pourra également être repris dans le règlement d’assainissement.

Les structures compétentes engagent généralement la réalisation du zonage dans le cadre d’une démarche plus opérationnelle, visant à élaborer un outil d’aide à la décision, usuellement appelé Schéma Directeur de Gestion des Eaux Pluviales. Si ce schéma n’a pas une définition ni une valeur réglementaire, il est largement recommandé par les agences de l’eau, dans les actuels projets de SDAGE, et a été repris dans la circulaire du 12 mai 1995.

2.2 CODE DE L’URBANISME

Selon le calendrier et les compétences de la collectivité, le zonage pluvial peut être élaboré :

- soit dans une démarche spécifique : projet de zonage (délimitation des zones et notice justifiant le zonage envisagé) soumis à enquête publique, puis à approbation ;
- soit dans le cadre de l’élaboration ou de la révision d’un PLU, en associant, le cas échéant, les collectivités compétentes. Dans ce cas, il est possible de soumettre les deux démarches à une enquête publique conjointe.
Intégré au PLU, le zonage pluvial a plus de poids car il est alors consulté systématiquement lors de l’instruction des permis de construire.

L’article L123-1 du code de l’urbanisme ouvre explicitement cette possibilité :

"Les plans locaux d’urbanisme comportent un règlement qui fixe, ..., les règles générales et les servitudes d’utilisation des sols permettant d’atteindre les objectifs mentionnés à l’article L. 121-1, qui peuvent notamment comporter l’interdiction de construire, ... et définissent, en fonction des circonstances locales, les règles concernant l’implantation des constructions.

A ce titre, ils peuvent : ...

11° Délimiter les zones visées à l’article L. 2224-10 du code général des collectivités territoriales concernant l’assainissement et les eaux pluviales ;”

2.3 CODE DE L’ENVIRONNEMENT


Dans le cadre d’un permis de construire, un projet d’urbanisation peut entrer dans le champ d’application du Code de l’Environnement, dont la partie réglementaire (R214-1 et suivants) relative à la nomenclature des opérations soumises à autorisation ou à déclaration, définit les rubriques susceptibles d’être concernées par le projet :

<table>
<thead>
<tr>
<th>RUBRIQUE</th>
<th>INTITULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.5.0.</td>
<td>Rejet d’eaux pluviales dans les eaux douces superficielles ou sur le sol ou dans le sous-sol, la surface totale du projet, augmentée de la surface correspondant à la partie du bassin naturel dont les écoulements sont interceptés par le projet, étant :</td>
</tr>
<tr>
<td></td>
<td>- 1° Supérieure ou égale à 20 ha (A) ;</td>
</tr>
<tr>
<td></td>
<td>- 2° Supérieure à 1 ha mais inférieure à 20 ha (D).</td>
</tr>
</tbody>
</table>

2.4 NORME NF 752 - 2

La norme NF EN 752, révisée en mars 2008, relative aux réseaux d’évacuation et d’assainissement à l’extérieur des bâtiments, précise des principes de base pour le dimensionnement hydraulique, la conception, la construction, la réhabilitation, l’entretien et le fonctionnement des réseaux. Elle rappelle ainsi que le niveau de performance hydraulique du système relève de spécifications au niveau national ou local.

En France, en l’absence de réglementation nationale, les spécifications de protection relèvent d’une prérégative des autorités locales compétentes (collectivités locales, maître d’ouvrage, service en charge de la police de l’eau).
Cette norme propose néanmoins un certain nombre de valeurs guides pour les fréquences de calcul et de défaillance des réseaux. Ces valeurs sont modulées selon les enjeux socio-économiques associés. Elle rappelle également la nécessité d’évaluer les conséquences des défaillances.

Remarque : la norme ne raisonne pas en termes de période de retour de la pluie, mais de période de retour/fréquence des phénomènes de mise en charge et d’inondation. En d’autres termes, il s’agit plutôt de période de retour de débit, qui peut dans certaines situations différer de la période de retour de la pluie. Elle abandonne la notion de période de retour d'événements pluvieux générateur du dysfonctionnement (mise en charge ou débordement) pour s’appuyer sur celle de période de retour du dysfonctionnement lui-même.

En l’absence de spécifications locales, la norme NF EN 752 indique, pour le dimensionnement des réseaux d’assainissement pluvial, des fréquences pour la vérification de deux critères : mise en charge et débordement. Ces fréquences sont modulées selon le site dans lequel s’inscrivent le projet et les enjeux associés.

<table>
<thead>
<tr>
<th>Fréquence de mise en charge</th>
<th>Lieu</th>
<th>Fréquence d’inondation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 an</td>
<td>Zones rurales</td>
<td>1 tous les 10 ans</td>
</tr>
<tr>
<td>1 tous les deux ans</td>
<td>Zones résidentielles</td>
<td>1 tous les 20 ans</td>
</tr>
<tr>
<td>1 tous les 2 ans</td>
<td>Centre-ville/zones industrielles ou commerciales -si risque d’inondation vérifié</td>
<td>1 tous les 30 ans</td>
</tr>
<tr>
<td>1 tous les 5 ans</td>
<td>-si risque d’inondation non vérifié</td>
<td></td>
</tr>
<tr>
<td>1 tous les 10 ans</td>
<td>Passages souterrains routiers ou ferrés</td>
<td>1 tous les 50 ans</td>
</tr>
</tbody>
</table>

La norme NF EN 752 précise en particulier que le dimensionnement hydraulique des réseaux d’évacuation et d’assainissement s’effectue en tenant compte :

- des effets des inondations sur la santé et la sécurité ;
- des coûts des inondations ;
- du niveau de contrôle possible d’une inondation de surface sans provoquer de dommage ;
- de la probabilité d’inonder les sous-sols par une mise en charge.

Bien que la norme NF EN 752 soit essentiellement consacrée aux réseaux d’assainissement, ces valeurs guides peuvent également être utilisées pour le dimensionnement de techniques alternatives de gestion des eaux pluviales, dans l’objectif de protection contre les inondations. Néanmoins, la mise en œuvre de rétention à la source est parfois motivée par la nécessité de protéger ou réduire la vulnérabilité d’enjeux en aval, objectif auquel la conception et le dimensionnement de l’ouvrage doivent alors être adaptés. Ainsi, une vulnérabilité particulière en aval (présence d’un passage souterrain très fréquenté, d’une zone commerciale très attractive...) peut motiver de dimensionner un ouvrage de rétention pour prendre en compte une période de retour plus importante (jusqu’à 50 ou 100 ans).
3 PRINCIPES DU ZONAGE PLUVIAL

3.1 ETAT DES LIEUX DE L’ASSAINISSEMENT PLUVIAL

Les phases préalables à l’élaboration du zonage pluvial ont eu pour objet :

✓ La collecte des données et les visites de terrain sur les zones problématiques vis-à-vis du ruissellement pluvial,
✓ Le découpage de la commune en bassins versants, et l’élaboration de cartes générales des bassins versants et des réseaux,
✓ La réalisation d’un modèle numérique des réseaux pluviaux et unitaires de la commune de Sainte Consorce, et la réalisation d’un diagnostic de la réponse hydraulique des réseaux soumis à des pluies rares,
✓ La proposition d’aménagements dimensionnés de manière à éviter tout débordement des réseaux pour la pluie d’occurrence décennale,

Le zonage pluvial est élaboré en partant du principe que le réseau d’assainissement est dimensionné sur l’occurrence décennale, et que tout nouvel aménagement ne doit pas dégrader les débits rejetés, quelle que soit l’occurrence de pluie et ce jusqu’à l’occurrence centennale.

Ce principe est directement issu de la réglementation du PPRNI de l’Yzeron, approuvé le 22 octobre 2013.

3.2 PRINCIPES DU ZONAGE PLUVIAL

Les postulats de départ pour l’élaboration du zonage pluvial sont :

➢ Le souci de respecter les prescriptions des documents réglementaires applicables sur le territoire de la commune de Sainte Consorce, le SCOT de l’Ouest Lyonnais, le SDAGE Rhône Méditerranée, et surtout le PPRNI de l’Yzeron.

➢ Le souci de respecter le principe consistant à éviter qu’un nouvel aménagement vienne dégrader la situation actuelle, vis-à-vis du ruissellement. À ce titre, les prescriptions du PPRNI donnent les contraintes à respecter concernant les eaux pluviales pour les zones ouvertes à l’urbanisation future :

« Le zonage pluvial sera établi avec la contrainte suivante : l’imperméabilisation nouvelle occasionnée par :

• Toute opération d’aménagement ou construction nouvelle,
• Toute infrastructure ou équipement,
ne doit pas augmenter le débit naturel en eaux pluviales de la parcelle (ou du tènement). Cette prescription est valable pour tous les événements pluviaux jusqu’à l’événement d’occurrence 100 ans. Pour le cas où des ouvrages de rétention doivent être réalisés, le débit de fuite à prendre en compte pour les pluies de faible intensité ne pourra être supérieur au débit maximal par ruissellement sur la parcelle (ou le tènement) avant aménagement pour une occurrence 5 ans.

Les techniques de gestion alternative des eaux pluviales seront privilégiées pour atteindre cet objectif (maintien d’espaces verts, écoulements des eaux pluviales dans des noues, emploi de revêtements poreux, chaussées réservoirs, etc...). »
Ces prescriptions ont été retenues et adaptées en accord avec l’équipe communale pour pouvoir être applicables à l’échelle de la commune.

De plus, ce n’est pas la parcelle avant aménagement qui constitue l’état de référence à ne pas dépasser mais le bassin versant dans lequel est situé le projet. A ce titre, le coefficient de ruissellement du projet ne devra pas dépasser le coefficient maximal autorisé à l’intérieur du bassin versant concerné.

- La continuité dans les exigences envers les aménageurs, en évitant d’imposer à des projets « modérés » des contraintes extrêmement sévères par rapport à celles de parcelles voisines déjà urbanisées, principe qui sous-tend un droit d’antériorité lors de l’entrée en vigueur du présent zonage.

- La possibilité que l’ouvrage soit réalisé sur une parcelle proche en cas d’impossibilité sur la parcelle ou d’opportunité de mutualisation ou également d’un point de vue esthétique. Dans tous les cas, l’emplacement retenu pour l’ouvrage de rétention devra être situé à l’aval de la zone et recueillir l’ensemble des eaux ruisselées sur la surface du projet. Enfin, s’il s’agit d’un terrain public, le maître d’ouvrage participera au financement de l’ouvrage à la concurrence de l’utilité qu’il en a.

Dans ce contexte, le zonage a été élaboré comme suit :

- Le territoire de la commune a été divisé en bassins versants, et à chaque bassin versant correspond un coefficient de ruissellement maximal autorisé, qui est égal au coefficient de ruissellement actuel,

- Tout aménagement entraînant un dépassement du coefficient de ruissellement de référence dans la zone dans laquelle il se situe doit faire l’objet d’une rétention,

- La pluviométrie de référence pour la rétention à mettre en place est d’occurrence centennale sur tout le territoire,

- Une méthode de calcul pour la rétention a été définie dans le respect des principes précédents, accompagnée d’un outil d’aide au dimensionnement (fourni en version numérique.)

Il est également rappelé que ces prescriptions ne se substituent pas aux dispositions de la Loi sur l’Eau, notamment en cas de création de nouveaux rejets pluviaux dans les eaux superficielles ou d’imperméabilisation dépassant les seuils de superficie totale desservie prévus par la législation en vigueur.
4 REGLEMENT PLUVIAL

4.1 ASPECTS JURIDIQUES

Tout aménagement ou opération réalisé en matière d’assainissement pluvial doit respecter le régime juridique applicable aux eaux pluviales et notamment :

- Les articles 640 et suivants du Code Civil ;
- Les articles L 214-1 et suivants du Code de l’Environnement ;

Notamment, *le présent règlement ne se substitue pas à la loi sur l’eau* précitée, tout nouveau rejet d’eaux pluviales dans les eaux superficielles devant faire l’objet d’une procédure :

- De déclaration si la superficie totale du projet est supérieure ou égale à 1 Ha, mais inférieure à 20 Ha,
- D’autorisation si la superficie totale du projet est supérieure ou égale à 20 Ha,
- D’autorisation en cas de création d’une zone imperméabilisée de plus de 5 Ha d’un seul tenant (à l’exception des voies publiques affectées à la circulation).


Finalement, toute activité entrant dans le champ d’application de la loi n°76-663 du 19 juillet 1976 relative aux installations classées pour la protection de l’environnement, conformément au décret n°77-1133 du 21 septembre 1977, devra se conformer à la réglementation en vigueur en matière d’effluents pluviaux avant rejet en milieu naturel ou dans les réseaux de la commune de Sainte Consorce.

4.2 DESTINATION DES EAUX PLUVIALES

Les eaux pluviales peuvent être :

- Evacuées dans le réseau public collectant ces eaux, lorsqu’il existe ; dans ce cas, le diamètre de la canalisation de raccordement doit être inférieur au diamètre de la canalisation publique,
- Rejetées dans un fossé, lorsqu’il existe ; dans ce cas, le rejet est soumis à l’autorisation du propriétaire ou gestionnaire du fossé,
- Rejetées dans les eaux superficielles, dans le respect des procédures d’autorisation et de déclaration prévues par la loi ; dans les parcelles qui bordent une zone inondable, les eaux pluviales sont évacuées à un niveau altimétrique supérieur à la cote des plus hautes eaux.
Dans tous les cas, la commune demande à ce que tous les rejets d’eaux pluviales se fassent soit vers le réseau pluvial, lorsqu’il existe, soit directement vers le milieu naturel.

**4.3 OPERATIONS D’AMENAGEMENTS AU SENS DU CODE DE L’URBANISME**

Pour ces opérations d’aménagement (ZAC, AFU, permis groupés, lotissements), les ouvrages de stockage provisoire des eaux pluviales sont obligatoirement **collectifs**.

**4.4 DROIT D’ANTERIORITE**

**4.4.1 ANTERIORITE DES OPERATIONS D’AMENAGEMENTS**

Les dispositions du présent règlement ne s’appliquent pas aux opérations d’aménagement (ZAC, AFU, permis groupés, lotissements), qui ont fait l’objet d’un arrêté d’autorisation avant l’entrée en vigueur du zonage pluvial.

**4.4.2 ANTERIORITE DES OUVRAGES DE RETENTION PREEXISTANTS**

Lorsque la (les) parcelle(s), sur laquelle (lesquelles) est envisagé un aménagement, est (sont) déjà desservie(s) par un dispositif individuel ou collectif de rétention, aucun dispositif supplémentaire de rétention n’est exigé, sous réserve de justifier que le dispositif de rétention préexistant a été dimensionné en prenant en compte l’imperméabilisation induite par le projet.

A défaut, un dispositif complémentaire est nécessaire pour les surfaces imperméabilisées non prises en compte dans le dimensionnement de l’ouvrage de rétention préexistant.

Le dispositif complémentaire est dimensionné dans les limites de superficies précisées à l’article 4.6, et en appliquant la méthode de calcul décrite dans le présent règlement.

**4.5 TRAITEMENT DES EAUX PLUVIALES**

Tous les rejets susceptibles d’entraîner des risques particuliers d’entraînement de pollution par lessivage se doivent de respecter les objectifs fixés par la réglementation en vigueur en la matière, et notamment la loi sur l’eau, la loi sur les installations classées pour la protection de l’environnement et le SDAGE Rhône-Méditerranée (et le cas échéant faire l’objet des procédures administratives prévues par la loi).
4.6 ZONAGE PLUVIAL

En application de l’article L 2224-10 du Code Général des Collectivités Territoriales, un zonage pluvial est institué sur le territoire de la commune de Sainte Consorce en vue de la maîtrise, de la collecte et du stockage des eaux pluviales et de ruissellement.

Les documents graphiques de zonage fixent pour chaque bassin versant un coefficient de ruissellement maximal. Le plan de zonage figure en Annexe 1.

Ces dispositions s’appliquent sur l’ensemble du territoire de la commune de Sainte Consorce, et sont fondées sur un principe de non-aggravation de l’état actuel.

Tout aménagement qui entraîne à la fois :

1. La création de surfaces imperméabilisées,
2. Un rejet des eaux pluviales dans le réseau public, dans un fossé ou dans les eaux superficielles,
3. Un dépassement du coefficient de ruissellement maximal du bassin versant dans lequel il se situe,

rend obligatoire la création d’un dispositif de rétention et de restitution à débit régulé des eaux pluviales soumis toutefois à des conditions d’ordre technique précisées plus loin.

Lorsque l’aménagement se situe à cheval sur plusieurs bassins versants, le coefficient de ruissellement maximal qui s’y applique est obtenu par moyenne des coefficients des bassins versants concernés pondérée par la surface du projet au sein de chaque bassin versant.

Toutes les eaux ruisselées sur le projet doivent être récupérées à l’aval immédiat de la zone imperméabilisée créée. Il est ainsi demandé aux aménageurs de compenser toute augmentation du ruissellement induite par de nouvelles imperméabilisations de sols (création ou extension de bâtis ou d’infrastructures existantes), par la mise en œuvre de dispositifs de rétention des eaux pluviales ou autres techniques alternatives.

Le ruissellement des surfaces périphériques au projet ne doit pas parvenir jusqu’à l’ouvrage de rétention. En cas d’imposibilité technique, le dimensionnement de la rétention doit prendre en compte ce ruissellement supplémentaire (voir paragraphe 5.2.2).

Il est important de noter qu’un ouvrage de rétention des eaux pluviales n’est pas un « volume » que l’on remplit, un « trou » où l’on déverse des eaux. C’est en premier lieu un ouvrage qui permet de limiter le débit rejeté dans les réseaux aval (régulation) accompagné du volume nécessaire pour stocker temporairement les débits et volumes excédentaires qui arrivent en amont de la régulation.

Par ailleurs, les ouvrages de rétention peuvent également avoir d’autres vocations, comme par exemple le stockage en fond d’eaux pluviales pour l’arrosage, mais tout en sachant que le mode de fonctionnement et les dimensions minimales pour l’usage « écrètement pluvial » devront toujours être strictement respectés.

Les ouvrages sont munis d’une surverse de sécurité.

Le mode de dimensionnement de ces ouvrages est précisé dans les chapitres suivants.
5 MODE DE CALCUL DES OUVRAGES DE RETENTION

5.1 DONNEES DE DEPART

5.1.1 DONNEES PLUVIOMETRIQUES


Elles sont récapitulées dans le tableau ci-dessous.

Tableau 1 : Données pluviométriques sur le Grand Lyon

<table>
<thead>
<tr>
<th>Période de retour</th>
<th>Pluie de 6min à 30min</th>
<th>Pluie de 30min à 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0.5</td>
<td>2.384</td>
<td>0.496</td>
</tr>
<tr>
<td>1</td>
<td>2.816</td>
<td>0.496</td>
</tr>
<tr>
<td>2</td>
<td>3.328</td>
<td>0.496</td>
</tr>
<tr>
<td>3</td>
<td>3.67</td>
<td>0.496</td>
</tr>
<tr>
<td>5</td>
<td>4.151</td>
<td>0.496</td>
</tr>
<tr>
<td>10</td>
<td>4.906</td>
<td>0.496</td>
</tr>
<tr>
<td>15</td>
<td>5.524</td>
<td>0.487</td>
</tr>
<tr>
<td>20</td>
<td>6.07</td>
<td>0.49</td>
</tr>
<tr>
<td>25</td>
<td>6.464</td>
<td>0.492</td>
</tr>
<tr>
<td>30</td>
<td>6.77</td>
<td>0.493</td>
</tr>
<tr>
<td>40</td>
<td>7.216</td>
<td>0.495</td>
</tr>
<tr>
<td>50</td>
<td>7.545</td>
<td>0.495</td>
</tr>
<tr>
<td>60</td>
<td>7.803</td>
<td>0.496</td>
</tr>
<tr>
<td>80</td>
<td>8.183</td>
<td>0.496</td>
</tr>
<tr>
<td>100</td>
<td>8.467</td>
<td>0.497</td>
</tr>
<tr>
<td>150</td>
<td>8.938</td>
<td>0.497</td>
</tr>
</tbody>
</table>

5.1.2 PLUIES DE REFERENCE

L’évènement pluviométrique de référence à écrêter est la pluie centennale de durée 1h, soit 59.5 mm en 60 minutes.

Le débit de rejet maximal imposé correspond au débit généré par la pluie quinquennale de durée 1h, soit une intensité de 28.1 mm en 60 minutes, sur une superficie égale à la superficie du projet et avec un coefficient de ruissellement égal au coefficient de ruissellement maximal autorisé sur le projet.

NB : Choix de la pluie de durée 1 heure

La pluie centennale de durée 1 heure a été choisie pour ce projet à l’issue d’une étude de sensibilité, car il s’agit de la pluie la plus sécuritaire pour la commune :

- En terme de volume de rétention à la parcelle,
- Tout en restant acceptable en terme de débit de vidange du volume de rétention vers le réseau.
5.1.3 DONNEES RELATIVES AU PROJET

Les données nécessaires et relatives au projet sont :

- La surface du projet notée $S_p$, exprimée en mètres carrés, dont les eaux de ruissellement seront reprises par l’ouvrage de rétention le cas échéant,
- Le coefficient de ruissellement du projet noté $C_p$, exprimé en pourcentage,
- Le coefficient de ruissellement maximal autorisé sur le projet noté $C_{ma}$, conformément à la carte de zonage.

5.1.4 COEFFICIENT DE RUISSELLEMENT DU PROJET

Le coefficient de ruissellement d’un projet peut être calculé à partir des coefficients de ruissellement unitaires suivants :

<table>
<thead>
<tr>
<th>Type de surface</th>
<th>Coefficient de ruissellement $C_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcs, jardins</td>
<td>0,15</td>
</tr>
<tr>
<td>Chemins de terre, graviers, revêtements perméables</td>
<td>0,30</td>
</tr>
<tr>
<td>Dalles, Pavés, terrasses</td>
<td>0,75</td>
</tr>
<tr>
<td>Toitures</td>
<td>0,80</td>
</tr>
<tr>
<td>Voirie, parkings, autres surfaces bétonnées</td>
<td>0,90</td>
</tr>
</tbody>
</table>

En cas de doute ou pour une surface n’entrant pas dans les types de surface cités ci-dessus, il sera pris par défaut un coefficient de ruissellement de 0,30 pour les surfaces jugées plutôt perméables, et 0,80 pour les surfaces jugées plutôt imperméables.

NB : Les coefficients de ruissellement proposés ici sont différents des coefficients utilisés dans le rapport de phase 2 pour la détermination des coefficients de ruissellement des bassins versants. En effet, ceux-ci sont adaptés à l’échelle d’un projet, tandis que ceux de la phase 2 sont adaptés à l’échelle d’un bassin versant (exemple : un habitat rural comprend à la fois des surfaces de type toiture et jardins).

La détermination du coefficient de ruissellement du projet se fait par pondération des coefficients de ruissellement élémentaires en fonction de la superficie représentative sur la zone de projet (exemple : une parcelle composée à 25% de toitures et à 75% de jardins possède un coefficient de ruissellement $C_p = 0.25 \times 0.8 + 0.75 \times 0.15 = 0.31$).
5.1.5 COEFFICIENT MAXIMAL DE RUISSELLEMENT AUTORISÉ
Le coefficient maximal de ruissellement autorisé du bassin versant où se situe le projet $C_{ma}$ est fourni par la carte de zonage.

Lorsque l'emprise du projet est située sur plusieurs bassins versants, $C_{ma}$ est calculé par moyenne des coefficients de chaque bassin versant ($C_{ma1}$, $C_{ma2}$, ...) pondérée par la superficie du projet au sein de chaque bassin versant ($S_{p1}$, $S_{p2}$, ...).

Par exemple pour un projet sur trois bassins versants distincts :

$$C_{ma} = \frac{(C_{ma1} \times S_{p1} + C_{ma2} \times S_{p2} + C_{ma3} \times S_{p3})}{(S_{p1} + S_{p2} + S_{p3})}$$

Si le coefficient de ruissellement du projet est supérieur au coefficient de ruissellement maximal autorisé, soit si $C_{p} > C_{ma}$, un dispositif de rétention doit être réalisé.

5.1.6 PRINCIPES DE RETENTION
Le dispositif de rétention peut prendre plusieurs formes :

- Bassins creusés à ciel ouvert ou enterrés,
- Noues (fossés dont la longueur et la largeur sont importantes, sans pour autant qu’ils soient de forte profondeur), tranchées,
- Collecteurs enterrés de dimensions conséquentes,
- Chaussées réservoirs,
- Autres

Ces dispositifs sont considérés comme étanches : il n’est pas autorisé de diminuer le volume de rétention préconisé en partant du principe qu’une partie du débit de fuite est infiltré. En effet, si l’infiltration peut s’avérer efficace pour les pluies faibles et moyennes, elle n’est pas assurée pour un événement centennal, les sols se saturant rapidement pour un événement de cette ampleur.

En aval des volumes mobilisés, un orifice calibré est installé afin de limiter les débits rejétés à l’exutoire. L’ouvrage possèdera également un trop plein pour l’évacuation des pluies exceptionnelles d’intensité supérieure à la pluie de référence, et dimensionné selon les enjeux identifiés à l’aval (zones urbanisées, hôpitaux, écoles, etc...).
5.2 CALCUL DES CARACTERISTIQUES DE LA RETENTION

Afin de simplifier les calculs à réaliser pour le dimensionnement de la rétention, le débit de fuite maximal de l'ouvrage (Qf) est égal au débit moyen ruisselé sur la superficie du projet pour un coefficient de ruissellement égal au coefficient de ruissellement maximal autorisé, et pour la pluie d'occurrence 5 ans de durée une heure. Ce débit reste inférieur au débit maximal ruisselé pour la pluie 5 ans, comme imposé par le PPRNI.

Cette méthode de calcul adaptée pour une utilisation simple et facile intégrée dans une fiche de calcul, surestime le volume de rétention, par rapport à l'utilisation d'une méthode de calcul de type génération d'hydrogramme, mais qui nécessite l'utilisation de programmes de calcul plus complexes non applicables pour la mise en place d'une fiche de calcul simplifiée. Un coefficient d'abattement de 25% sera retenu pour la détermination des volumes de rétention.

Dans tous les cas, le volume de l'ouvrage de rétention devra être de 3 m³ au minimum.

5.2.1 VOLUME ET DEBIT DE FUITE

✓ Débit de fuite maximal de l’ouvrage (Qf)

Le débit de fuite maximal de l’ouvrage correspond au débit moyen ruisselé sur la superficie du projet pour un coefficient de ruissellement égal au coefficient de ruissellement maximal autorisé, et pour la pluie d’occurrence 5 ans de durée une heure.

\[ Q_f = \frac{H_5 \times S_p \times C_{ma}}{3600} \text{ (L/s)} \]

Avec :
- H₅, la hauteur d'eau pour la pluie quinquennale de durée 1h (= 28.1 mm),
- Sₚ, la surface du projet (m²),
- Cₘₐ le coefficient de ruissellement maximal autorisé sur le projet (calcul précisé au chapitre 5.1.5).

Dans tous les cas, le débit de fuite sera de 5 L/s au minimum.

✓ Volume de rétention

Le volume de rétention avant abattement est calculé d’après la formule ci-dessous :

\[ V = \frac{S_p \times H_{100}}{1000} - Q_f \times 3.6 \text{ (m³)} \]

Avec :
- H100 la hauteur d'eau pour la pluie centennale de durée 1h (= 59.5 mm),
- Cₚ le coefficient de ruissellement du projet (cf tableau au chapitre 5.1.4),
- Sₚ la surface du projet en m²,
- Qf le débit de fuite maximal de l’ouvrage.
Dans tous les cas, le volume de l’ouvrage de rétention après abattement ne devra pas être inférieur à 3 m³.

5.2.2 CAS DES SURFACES DEJA IMPERMEABILISEES

Comme indiqué à l’article 4.6, les eaux de ruissellement provenant des surfaces déjà imperméabilisées et non comprises dans la zone de projet ne doivent pas parvenir au dispositif de rétention. En cas d’impossibilité technique, le dispositif de rétention à réaliser doit être transparent vis-à-vis des eaux de ruissellement provenant de ces surfaces.

Par conséquent :

- Le volume calculé pour le dispositif de rétention n’est pas modifié,
- Le débit de fuite Qf du dispositif correspond au débit de rejet imposé Qmax augmenté du débit de ruissellement de ces surfaces pour l’évènement pluvieux à écarter.

Ainsi,

\[ Q_f = \frac{H_5 \times (Sp + S_{sup}) \times C_{ma}}{3000} \text{ (l/s)} \]

Avec :

- \( H_5 \) la hauteur d’eau pour la pluie quinquennale de durée 1h,
- \( Sp \) la surface du projet (m²),
- \( S_{sup} \) la surface supplémentaire interceptée,
- \( C_{ma} \) le coefficient de ruissellement maximal autorisé sur le projet.

5.2.3 DISPOSITIONS PARTICULIERES

Lorsqu’un aménagement est situé sur plusieurs bassins versants et/ou comporte plusieurs exutoires, les calculs sont réalisés indépendamment pour chaque exutoire pluvial concerné.

A ce titre, dans le calcul :

- La superficie Sp pour chaque dispositif est la superficie amont desservie par le système de rétention,
- Un ouvrage de rétention doit être implanté au point bas de chaque bassin versant pour lequel le projet fait dépasser le ruissellement maximal autorisé.

5.2.4 CAS DES EXTENSIONS SUR DES PARCELLES DEJA PARTIELLEMENT IMPERMEABILISEES

Dans le cas d’une extension de construction existante sur une parcelle, c’est l’emprise au sol de l’extension qui sera prise en compte pour le dimensionnement.
Exemples concrets d’application :

- Construction d’une terrasse après mise en application du zonage pluvial : Lorsque le propriétaire de la parcelle a construit sa maison et réalisé le chemin d’accès (voie de garage, allée en pavés), aucun zonage pluvial n’existait sur la commune. Il n’a donc prévu aucun dispositif de rétention des eaux pluviales. Plusieurs mois après l’approbation du zonage pluvial, il débute des travaux pour la réalisation d’une terrasse à l’arrière de sa maison.

  Le propriétaire doit alors se conformer aux prescriptions du zonage pluvial, et mettre en place un ouvrage de rétention prenant en compte la nouvelle surface imperméabilisée (la terrasse).

  Conformément aux prescriptions communales, le dispositif de rétention devra avoir un volume minimal de 3 m³.

Toutes les surfaces imperméabilisées existantes sont intégrées à l’état initial dans le zonage pluvial.

- Réalisation d’un projet en plusieurs phases de travaux, avec permis de construire accordé après approbation du zonage pluvial : Un particulier débute la construction de sa maison après mise en application du zonage pluvial. Il doit donc mettre en place un dispositif de rétention des eaux pluviales. Plusieurs années plus tard, il réalise une dépendance. Le particulier devra prouver que le volume de l’ouvrage de rétention a été dimensionné pour prendre en compte la surface imperméabilisée créée par la dépendance.

  Dans le cas contraire, il devra créer un dispositif complémentaire prenant en compte l’augmentation des ruissellements sur sa parcelle.

Les ruissellements induits par toute création de surface imperméabilisée après mise en application du zonage pluvial doivent pouvoir être régulés.
5.2.5 CAS DES PROJETS DE SUPERFICIE SUPERIEURE A 1 HA

Dans ce cas les projets sont soumis à déclaration ou autorisation au titre de la loi sur l’eau.

Le calcul est le même que celui exposé au paragraphe 5.2.1 sauf qu’il faut remplacer le coefficient maximal autorisé (Cma) par le coefficient de ruissellement de la parcelle concernée avant aménagement. Pour le calcul de ce coefficient, se référer au tableau du paragraphe 5.1.4.

5.3 EXEMPLES DE CALCUL D’UN VOLUME ET D’UN DEBIT DE FUITE

5.3.1 EXEMPLE 1

Considérons un projet d’une surface totale de 4 000 m², pour un coefficient de ruissellement de 0.80 :

- Si ce projet est implanté dans un bassin versant peu imperméabilisé, de coefficient maximal autorisé 0.20, les caractéristiques de l’ouvrage de rétention sont :
  - Débit de fuite (Qf) = 28.1 mm * 4000 m² * 0.20 / 3600 = 6.2 l/s
  - Volume de stockage (avant abattement) = (4000 m² * 0.80 * 59.5 mm/ 1000) – 6.2 l/s* 3.6 = 168 m³
  - Volume de stockage = 168 * 0.75 = 126 m³

- Si ce projet est implanté dans un bassin versant assez imperméabilisé, de coefficient maximal autorisé 0.50, les caractéristiques de l’ouvrage de rétention sont :
  - Débit de fuite (Qf) = 28.1 mm * 4000 m² * 0.50 / 3600 = 15.6 l/s
  - Volume de stockage (avant abattement) = (4000 m² * 0.80 * 59.5 mm/ 1000) – 15.6 l/s* 3.6 = 135 m³
  - Volume de stockage = 135 * 0.75 = 102 m³

5.3.2 EXEMPLE 2

Considérons un projet d’une surface totale de 1 500 m², pour un coefficient de ruissellement de 0.70 :

- Si ce projet est implanté dans un bassin versant peu imperméabilisé, de coefficient maximal autorisé 0.20, les caractéristiques de l’ouvrage de rétention sont :
  - Débit de fuite (Qf) = 28.1 * 1500 * 0.20 / 3600 = 2.3 l/s
  - Volume de stockage (avant abattement) = (1500 * 0.70 * 59.5 / 1000) – 2.3 * 3.6 = 54 m³
  - Volume de stockage = 54 * 0.75 = 41 m³

- Si ce projet est implanté dans un bassin versant assez imperméabilisé, de coefficient maximal autorisé 0.50, les caractéristiques de l’ouvrage de rétention sont :
  - Débit de fuite (Qf) = 28.1 * 1500 * 0.50 / 3600 = 5.9 l/s
  - Volume de stockage (avant abattement) = (1500 * 0.70 * 59.5 / 1000) – 5.9 * 3.6 = 50 m³
  - Volume de stockage = 50 * 0.75 = 38 m³
5.4 COMMENT LIMITER LES VOLUMES DE RETENTION A METTRE EN ŒUVRE

Certaines zones imperméabilisées peuvent être rendues « à ruissellement naturel » :
- Zones de stationnement privées en « nid d’abeille » sans compactage des terrains,
- Allées de graviers, de galets ou de pavés drainants,
- Toitures végétalisées (norme HQE)
- Etc.

Ces surfaces sont alors considérées comme non imperméabilisées : leur coefficient de ruissellement est fixé à 0.20.

Par contre, certains éventuels aménagements connexes à ce type de procédé (dépose de matériaux compactés par exemple) entraînent néanmoins une augmentation du ruissellement et ne pourront dès lors pas permettre la diminution escomptée du ruissellement.

De façon générale, dès qu’un projet comporte la mise en œuvre de matériaux imperméables ou moins perméables que les sols (enrobé, bicouche, toiture, tout-venant compacté, pavés liaisonnés ou autobloquants non drainants, revêtements synthétiques, plans d’eau, etc.), et que toutes les garanties de non-imperméabilisation supplémentaire ne sont pas apportées, les surfaces concernées sont considérées comme imperméabilisées.
6 AIDE AU DIMENSIONNEMENT

6.1 OUVRAGE DE RETENTION

L’arrivée des eaux pluviales collectées en amont dans le dispositif de rétention se fera en hauteur par rapport au fond du dispositif. Le fil d’eau d’arrivée est appelé Zmax.

L’ouvrage calibré permettant de limiter les débits de sortie sera implanté en fond du dispositif de rétention. Son fil d’eau est appelé Zmin.

Le fond du dispositif de rétention est subhorizontal, avec une pente de l’ordre de 1% dirigée vers l’orifice de sortie afin d’éviter la stagnation des eaux et les nuisances associées (moustiques, odeurs, etc.).

On définit la hauteur utile (Hu) du dispositif comme suit :Hu = Zmax – Zmin.

A titre indicatif, de façon classique, la rétention se fait dans des bassins à ciel ouvert, des buses de grandes dimensions, des cuves enterrées (préfabriquées, notamment pour les petits volumes) ou des grands fossés voire des « canaux » subhorizontaux. Par contre, d’autres solutions existent, comme par exemple les noues (fossés très plats et larges), les chaussées réservoirs, les bassins béton enterrés, entre autres.

6.2 ORIFICE DE SORTIE

La sortie de l’orifice de rétention est constituée d’une buse, d’un masque, d’une tour de vidange, ou de tout autre dispositif permettant de limiter le débit de sortie.

Le débit maximal passant par l’orifice est calculé comme suit :

\[ Q = 600 \times S \times \sqrt{2 \times 0.81 \times (Hu - \alpha)} \quad (l/s) \]

Avec :

- Q : débit maximal en sortie (l/s),
- S : surface de l’orifice,
- Hu : hauteur utile du dispositif de rétention,
- \( \alpha \) : hauteur entre le fil d’eau et le barycentre de l’orifice de sortie (en m).

De fait, \( \alpha \) est le « milieu » de l’orifice de sortie. Pour une buse, \( \alpha \) est égal au rayon de la buse ; pour un ouvrage cadre, \( \alpha \) est égal à la moitié de la hauteur du cadre, etc.

Le débit Q doit être inférieur ou égal au débit maximal autorisé pour le projet (Qf).

Pour des ouvrages préfabriqués, on recherchera la plus grande dimension permettant d’obtenir un débit Q inférieur au Qmax.
6.3 VOLUME ET DIMENSIONS DE LA ZONE DE RETENTION

Le débit en sortie d’orifice $Q$ étant généralement différent du $Q_{\text{max}}$ (et obligatoirement inférieur ou égal à celui-ci), le volume réel nécessaire doit être recalculé :

$$V = \frac{Sp \cdot C_p \cdot H_{10D}}{10DD} - Q = 2.6 \ (m^3)$$

Avec :
- $H_{100}$ la hauteur d’eau pour la pluie centennale de durée 1h,
- $Sp$ la surface du projet ($m^2$),
- $C_p$ le coefficient de ruissellement du projet,
- $Q$ le débit de sortie d’orifice en l/s.

La géométrie de la zone de rétention doit permettre de stocker ce volume $V$ lorsque la hauteur d’eau à l’orifice est égale à $Hu$.

Dans le cas de dispositifs « compacts » (type bassin par exemple), où les différences altimétriques du fond sont très faibles (différence altimétrique des fonds inférieure à 10% de $Hu$), on obtient directement la surface moyenne du dispositif de rétention ($en \ m^2$) en divisant $V$ par $Hu$.

Dans le cas de dispositifs « allongés » (du type noue, canalisation, chaussée réservoir...), la perte de volume liée à l’évolution altimétrique des fonds devra être prise en considération.

On trouvera en **Annexe 2** les schémas de principe des ouvrages de stockage des eaux pluviales.
7 ANNEXES

7.1 ANNEXE 1 : PLAN DE ZONAGE DES EAUX PLUVIALES
ANNEXE 2 : SCHEMAS DE PRINCIPE DES OUVRAGES DE STOCKAGE DES EAUX PLUVIALES

7.2.1 TOITURES STOCKANTES
PHASE 3 : SCHEMA DIRECTEUR ET ZONAGE
DEUXIEME PARTIE : ZONAGE

7.2.2 BASSIN DE RETENTION